Endothelial modulation of neural sympathetic vascular tone in canine skeletal muscle.

نویسندگان

  • C E King-VanVlack
  • S E Curtis
  • J D Mewburn
  • S M Cain
  • C K Chapler
چکیده

The effect of nitric oxide synthase (NOS) inhibition and endothelin-A (ETA)-receptor blockade on neural sympathetic control of vascular tone in the gastrocnemius muscle was examined in anesthetized dogs under conditions of constant flow. Muscle perfusion pressure (MPP) was measured before and after NOS inhibition (Nomega-nitro-L-arginine methyl ester; L-NAME) and ETA-receptor blockade [cyclo-(D-Trp-d-Asp-Pro-D-Val-Leu); BQ-123]. Zero and maximum sympathetic nerve activities were achieved by sciatic nerve cold block and stimulation, respectively. In group 1 (n = 6), MPP was measured 1) before nerve cold block, 2) during nerve cold block, and 3) during nerve stimulation. Measurements under these conditions were repeated after L-NAME and then BQ-123. The same protocol was followed in group 2 (n = 6) except that the order of L-NAME and BQ-123 was reversed. MPP and muscle vascular resistance (MVR) increased after L-NAME and then decreased to control values after BQ-123. MVR decreased after BQ-123 alone and, with the addition of L-NAME, increased to a level not different from that observed during the control period. MVR fell during nerve cold block. This response was not affected by administration of L-NAME followed by BQ-123, but it was attenuated by administration of BQ-123 before L-NAME. The constrictor response during sympathetic nerve stimulation was enhanced by L-NAME; no further effect was observed with BQ-123, nor was the response affected when BQ-123 was given first. These findings indicate that endothelin contributes to 1) basal vascular tone in skeletal muscle and 2) the increase in skeletal muscle vascular resistance after NOS inhibition. Finally, nitric oxide "buffers" the degree of constriction in skeletal muscle vasculature during maximal sympathetic stimulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sympathetic nervous system and muscle: A two way interaction in health and disease

This review deals with the several mechanisms that control the fine balance between muscle energy expenditure and neurally mediated vascular responses during exercise. During exercise the SNS is activated as an opposing mechanism to the endothelium – derived vasodilatation in order to preserve hemodynamic balance (and teleologically protect against inadequate perfusion of vital organs like the ...

متن کامل

Neurogenic Histaminergic Vasodilation in Canine Skeletal Muscle: Mediation by c^-Adrenoceptor Stimulation

This study examines the neurogenic effect of a2-adrenoceptor stimulation on skeletal muscle vascular resistance and its relation to the level of background sympathetic activity. The isolated, separately perfused, neurally intact canine gracilis muscle preparation was used since it permits deliberate and quantifiable alterations in background sympathetic activity, as measured by skeletal muscle ...

متن کامل

Skeletal muscle vasodilation during systemic hypoxia in humans.

In humans, the net effect of acute systemic hypoxia in quiescent skeletal muscle is vasodilation despite significant reflex increases in muscle sympathetic vasoconstrictor nerve activity. This vasodilation increases tissue perfusion and oxygen delivery to maintain tissue oxygen consumption. Although several mechanisms may be involved, we recently tested the roles of two endothelial-derived subs...

متن کامل

Purinergic signaling and blood vessels in health and disease.

Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P...

متن کامل

Protease-Activated Receptor 2 Activation Inhibits N-Type Ca2+ Currents in Rat Peripheral Sympathetic Neurons

The protease-activated receptor (PAR)-2 is highly expressed in endothelial cells and vascular smooth muscle cells. It plays a crucial role in regulating blood pressure via the modulation of peripheral vascular tone. Although several mechanisms have been suggested to explain PAR-2-induced hypotension, the precise mechanism remains to be elucidated. To investigate this possibility, we investigate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 85 4  شماره 

صفحات  -

تاریخ انتشار 1998